A new control volume finite element method for the stable and accurate solution of the drift-diffusion equations on general unstructured grids
نویسندگان
چکیده
We present a new Control Volume Finite Element Method (CVFEM) for the drift-diffusion equations. The method combines a conservative formulation of the current continuity equations with a novel definition of an exponentially fitted elemental current density. An edge element representation of the nodal CVFEM current density in the diffusive limit motivates this definition. We prove that in the absence of carrier drift the nodal current is sum of edge currents, which solve one-dimensional diffusion problems, times H(curl)conforming edge basis functions. Replacement of the edge diffusion problems by one-dimensional driftdiffusion equations extends this representation to the general case. The resulting H(curl,Ω)-conforming, exponentially fitted current (EFC) density field combines the upwind effect from all edges and enables accurate computation of current density integrals on arbitrary surfaces inside the elements. This obviates the need for the control volumes to be topologically dual to the finite elements and results in a method that is stable and accurate on general unstructured finite element grids. This sets apart our approach from other schemes, such as the Scharfetter-Gummel Box Integration Method, which require topologically dual grids. Numerical studies of the CVFEM-EFC for a suite of standard advection-diffusion test problems on nonuniform grids confirms the accuracy and the robustness of the new formulation. Simulation of an nchannel MOSFET device tests the method in a more realistic setting. Copyright c © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Adaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملA Mass Conservative Method for Numerical Modeling of Axisymmetric flow
In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012